NSSL's Warn-on-Forecast Research Project Progress Report for Year 4

Adam Clark

Mike Coniglio

Jidong Gao

Thomas Jones

Ted Mansell

Corey Potvin

Dave Stensrud

Dusty Wheatley

Lou Wicker

Nusrat Yussouf

NSSL Team

Jing Chen

Gerry Creager

Mike French

Chris Karstens

Kent Knopfmeier

Patrick Skinner

Ryan Sobash

Terra Thompson

Zhuang Zhaorong

Major Activities

- NSSL Mesoscale Ensemble for HWT Spring Experiment
- 24 May Case studies
- Testing of various approaches
 - -Ens3DVAR, Hybrid, LETKF+RIP
 - -Generating Initial conditions for daily storm-scale prediction
- Non-central plains case work
- Best use of satellite and radar data together
- Assimilation of PAR radar data
- Other
 - -display of probabilistic hazard information (PHI)
 - -relation between dual-pol variables and tornadogenesis
 - -resolutions needed in model to capture storm dynamics

NSSL Mesoscale Ensemble (NME) HWT Spring Experiment

- WRF-ARW core
- 15-km CONUS Grid
- 36-members
- Initial and boundary conditions (ICs/ BCs) derived from 1200 UTC cycle of the Earth System Research Laboratory-Rapid Refresh (ESRL-RAP)
 - ICs/BCs randomly perturbed via the Torn et al. 2006 method
- WRF-ARW physics diversity
 - Cumulus: Kain-Fritsch, Grell, Tiedtke
 - PBL: YSU, MYJ, MYNN2
 - SW/LW Radiation: Dudhia, RRTMG
- DA performed by DART software
 - EAKF (Anderson 2001)
 - Prior adaptive covariance inflation (Anderson 2009)
 - Gaspari and Cohn (1999) spatial localization

- Hourly analyses by T+30 min
- Forecast to 03Z every 3 hours
 FCST completed by T+70 min
- Required < 700 cores of OU Supercomputer

Purpose: to gain experience doing RT!

2014 Warn-on-Forecast Workshop

NME 15 May 2013 N. Texas Event

NME 20 May 2013 Moore Event

NME 31 May 2013 El Reno Event

24 May 2011 Case Studies

- Evaluate various DA approaches on the "first"
 El Reno tornado (2011, not 2013!)
- 5 different experiments performed
 - -satellite + radar
 - -new initialization techniques + radar DA
 - -LETKF with running in place
 - -Ens3DVAR
 - -PAR rapid scan data impacts
- Trying to assess strengths and weaknesses of each approach
- Not a competition!! (no wagering was allowed...)

24 May 2011 Ens-3DVAR (Zhuang et al.)

- ➤ 3DVar and WRF ARW forecast cycle, using 36-member ensemble experiment with different combinations of physics schemes.
- > Every 10 min DA cycling for half hour and 1hr forecasting
- >Observations: radar Vr and cloud analysis, assimilation window: 3min
- ➤ Resolution is 3km×3km

20 I 4 Warn-on-Forecast Workshop

20:00-20:30 cycle, 1 hour FCST

Observed Radar Reflectivity

(Zhuang et al.)

Forecast Reflectivity (color shaded), Wind vectors

20:30-21:00 cycle, 1 hour FCST

Observed Radar Reflectivity

(Zhuang et al.)

Forecast Reflectivity (color shaded), Wind vectors

Non-Central Plains Cases

April 27, 2011

Yussouf et al

Non-Central Plains Cases 17 November 2013

Sobash et al

Jones et al

90 min forecast initialized at 2000 UTC

- PATH: Misses initial > 45 dBZ reflectivity areas for northern storms, but generates >80% probabilities nearby observed tracks during the 2030-2130 UTC forecast period. East bias also present
- RADP: ~100% probabilities near initial storm locations. Probabilities decrease quickly with what would become El Reno storm. RADO similar, but better with El Reno storm
- PATHRAD: Similar to RADO and RADP, but with higher probablities for southern storm tracks

Wheatley et al

BAMEX MCS Case

Impacts
of
Microphysical
Scheme
on
Analysis
and
Forecast
Evolution

2014 Warn-on-Forecast Workshop

Impact of Rapid Scan Radar (PAR) on 24 May El Reno Forecasts

Wicker et al

0-1.5 km Mean Layer Rotation Forecast 20:20-20:50 UTC

1 km Reflectivity Forecast valid @ 20:40 UTC

Shaded regions: Prob($\zeta > 7.5 \times 10^{-3} \text{ s}^{-1}$)

Blue dots: members where $\zeta > 1.5 \times 10^{-2} \text{ s}^{-1}$

Shaded regions: Prob(dBZ > 40) Solid blue line: Observed 40 dBZ. Thick dashed line: Mean ENS 40 dBZ Thin dashed line: Prob(40 dBZ) > 20%

Impact of Rapid Scan Radar (PAR) on 24 May El Reno Forecasts

1 km Reflectivity Forecast valid @ 20:40 UTC

Shaded regions: Prob($\zeta > 7.5 \times 10^{-3} \text{ s}^{-1}$)

Blue dots: members where $\zeta > 1.5 \times 10^{-2} \text{ s}^{-1}$

Shaded regions: Prob(dBZ > 40) Solid blue line: Observed 40 dBZ. Thick dashed line: Mean ENS 40 dBZ Thin dashed line: Prob(40 dBZ) > 20%

Probabilistic Hazard Information (PHI)

Probabilities generated from ensemble forecasts can be used to inform:

Forecast probability of occurrence

Impact of Vertical Resolution on Forecasts of the 31 May 2013 El Reno, OK Supercell

0 - 3 km Hodograph

- More vertical levels near the surface better resolves the environmental lowlevel wind
- Results in stronger environmental 0-1 km SRH and stronger predicted swaths of low-level vertical vorticity

41 Vertical Levels $\Delta z = 250 \text{ m}$

51 Vertical Levels $\Delta z = 125 \text{ m}$

61 Vertical Levels $\Delta z = 67.5 \text{ m}$

15 NOXP supercell cases, 11 from V2: differences between tornadic and non-tornadic hook echoes using Z_{DR} as proxy for median drop size?

French et al

15 NOXP supercell cases, 11 from V2: differences between tornadic and non-tornadic hook echoes using Z_{DR} as proxy for median drop size?

Tornadic: 4/5 ~20+% "small" drops

French et al

15 NOXP supercell cases, 11 from V2: differences between tornadic and non-tornadic hook echoes using Z_{DR} as proxy for median drop size?

Tornadic: 4/5 ~20+% "small" drops

Non-tornadic: 6/10 < 6% "small" drops

15 NOXP supercell cases, 11 from V2: differences between tornadic and non-tornadic hook echoes using Z_{DR} as proxy for median drop size?

Tornadic: 4/5 ~20+% "small" drops

Non-tornadic: 6/10 < 6% "small" drops

Median LCL for small vs. large drop cases: 747 m vs. 1192 m

Major Take Aways

- Case Work
 - both central and non-central plains
 - establishing baseline expectations
- DA Techniques
 - Some version of Ens-3DVAR, Hybrid, EnKF still in play
 - lots of engineering left to do in the DA parameter space
 - satellite data assimilation improves convective scale!
- Methodology for background (lots of tests)
 - use GFS ensemble at 00Z for IC/BC
 - multi-physics on mesoscale
 - cycle for 12-18 hours, then nest.
 - how to do this for 24/7 WoF?
- Convective scale grids
 - assimilation high resolution radar, satellite, and surface data
 - start to get at microphysical impacts, sophstication, and possible choices
 - how to use dual-pol data (big question for future)

Questions?

Drop Sizes and Storm Processes

Drop Sizes and Storm Processes

Drop Sizes and Storm Processes

~8 min prior to tornadogenesis: small drops 🛧, large drops 👃

